Metabolomics identifies perturbations in human disorders of propionate metabolism.

نویسندگان

  • William R Wikoff
  • Jon A Gangoiti
  • Bruce A Barshop
  • Gary Siuzdak
چکیده

BACKGROUND We applied untargeted mass spectrometry-based metabolomics to the diseases methylmalonic acidemia (MMA) and propionic acidemia (PA). METHODS We used a screening platform that used untargeted, mass-based metabolomics of methanol-extracted plasma to find significantly different molecular features in human plasma samples from MMA and PA patients and from healthy individuals. Capillary reverse phase liquid chromatography (4 microL/min) was interfaced to a TOF mass spectrometer, and data were processed using nonlinear alignment software (XCMS) and an online database (METLIN) to find and identify metabolites differentially regulated in disease. RESULTS Of the approximately 3500 features measured, propionyl carnitine was easily identified as the best biomarker of disease (P value 1.3 x 10(-18)), demonstrating the proof-of-concept use of untargeted metabolomics in clinical chemistry discovery. Five additional acylcarnitine metabolites showed significant differentiation between plasma from patients and healthy individuals, and gamma-butyrobetaine was highly increased in a subset of patients. Two acylcarnitine metabolites and numerous unidentified species differentiate MMA and PA. Many metabolites that do not appear in any public database, and that remain unidentified, varied significantly between normal, MMA, and PA, underscoring the complex downstream metabolic effects resulting from the defect in a single enzyme. CONCLUSIONS This proof-of-concept study demonstrates that metabolomics can expand the range of metabolites associated with human disease and shows that this method may be useful for disease diagnosis and patient clinical evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the Anticancer Effect of Xanthium Strumarium Root Extract on Human Epithelial Ovarian Cancer Cells Using 1H NMR-Based Metabolomics

Epithelial Ovarian cancer is the leading cause of cancer mortality among women all over the world. As chemotherapeutics has many side effects, researchers have focused on the potential use of medicinal plants as natural antitumor agents. Xanthium strumarium studied in this work as an herbal anticancer agent. This study aimed to evaluate the antitumor effect and metabolic alterations ca...

متن کامل

Metabolomics Application in Exercise Metabolism Research: A Review Study

Metabolomics, is a comprehensive measure of small metabolites (<1500 Da), which has attracted enormous attention in the last two decades. Metabolomics, in particular investigates unique biochemical fingerprints left behind by specific cellular processes, which represent the metabolic status. Exercise metabolism researchers have started to use this method since 2007. Metabolomics has been used t...

متن کامل

Serum-based metabolic alterations in patients with papillary thyroid carcinoma unveiled by non-targeted 1H-NMR metabolomics approach

Objective(s): As the most prevalent endocrine system malignancy, papillary thyroid carcinoma had a very fast rising incidence in recent years for unknown reasons besides the fact that the current methods in thyroid cancer diagnosis still hold some limitations. Therefore, the aim of this study was to improve the potential molecular markers for diagnosis of benign and malignant thyroid nodules to...

متن کامل

Metabolomics and Cell Therapy in Diabetes Mellitus

Diabetes with a broad spectrum of complications has become a global epidemic metabolic disorder. Till now, several pharmaceutical and non-pharmaceutical therapeutic approaches were applied for its treatment. Cell-based therapies have become promising methods for diabetes treatment. Better understanding of diabetes pathogenesis and identification of its specific biomarkers along with evaluation ...

متن کامل

Metabolomics Analysis of Mesenchymal Stem Cells

Various mesenchymal stem cells as easily accessible and multipotent cells can share different essential signaling pathways related to their stemness ability. Understanding the mechanism of stemness ability can be useful for controlling the stem cells for regenerative medicine targets. In this context, OMICs studies can analyze the mechanism of different stem cells properties or stemness ability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical chemistry

دوره 53 12  شماره 

صفحات  -

تاریخ انتشار 2007